Ubiquitous Self-Organizing Maps
نویسندگان
چکیده
Knowledge discovery in ubiquitous environments are usually conditioned by the data stream model, e.g., data is potentially infinite, arrives continuously and is subject to concept drift. These factors present additional challenges to standard data mining algorithms. Artificial Neural Networks (ANN) models are still poorly explored in these settings. State-of-the-art methods to deal with data streams are single-pass modifications of standard algorithms, e.g., Kmeans for clustering, and involve some relaxation of the quality of the results, i.e., since the data cannot be revisited to refine the models, the goal is to achieve good approximations [Gama, 2010]. In [Guha et al., 2003] an improved single pass k-means algorithm is proposed. However, k-means suffers from the problem that the initial k clusters have to be set either randomly or through other methods. This has a strong impact on the quality of the clustering process. CluStream [Aggarwal et al., 2003] is a framework that targets high-dimensional data streams in a two-phased approach, where an online phase produces micro-clusterings of the incoming data, while producing on-demand offline models of data also with k-means. In this position paper we address the use of SelfOrganizing Maps (SOM) [Kohonen, 1982] and argue its strengths over current methods and directions to be explored on its adaptation to ubiquitous environments, which involve dynamic estimation of the learning parameters based on measuring concept drift on, usually, non-stationary underlying distributions. In a previous work [Silva and Marques, 2012] we presented a neural network-based framework for data stream mining that explored the two-phased methodology, where the SOM produced offline models. In this paper we advocate the development of a standalone Ubiquitous SOM (UbiSOM), that is capable of producing models in an online fashion, to be integrated in the framework. This allows derived knowledge to be accessible at any time.
منابع مشابه
Ubiquitous Data-Mining with Self-Organizing Maps
Advances in technology are turning our mobile phones or PDAs into powerful computing devices capable of executing data mining algorithms. This paper discusses how the Self Organizing Map (SOM) algorithm can be adapted to a cooperating network of these devices. This approach opens the door to several new applications of data mining, including active data-collecting devices and ondemand knowledge...
متن کاملGreen Product Consumers Segmentation Using Self-Organizing Maps in Iran
This study aims to segment the market based on demographical, psychological, and behavioral variables, and seeks to investigate their relationship with green consumer behavior. In this research, self-organizing maps are used to segment and to determine the features of green consumer behavior. This was a survey type of research study in which eight variables were selected from the demographical,...
متن کاملSteel Consumption Forecasting Using Nonlinear Pattern Recognition Model Based on Self-Organizing Maps
Steel consumption is a critical factor affecting pricing decisions and a key element to achieve sustainable industrial development. Forecasting future trends of steel consumption based on analysis of nonlinear patterns using artificial intelligence (AI) techniques is the main purpose of this paper. Because there are several features affecting target variable which make the analysis of relations...
متن کاملGait Based Vertical Ground Reaction Force Analysis for Parkinson’s Disease Diagnosis Using Self Organizing Map
The aim of this work is to use Self Organizing Map (SOM) for clustering of locomotion kinetic characteristics in normal and Parkinson’s disease. The classification and analysis of the kinematic characteristics of human locomotion has been greatly increased by the use of artificial neural networks in recent years. The proposed methodology aims at overcoming the constraints of traditional analysi...
متن کاملGait Based Vertical Ground Reaction Force Analysis for Parkinson’s Disease Diagnosis Using Self Organizing Map
The aim of this work is to use Self Organizing Map (SOM) for clustering of locomotion kinetic characteristics in normal and Parkinson’s disease. The classification and analysis of the kinematic characteristics of human locomotion has been greatly increased by the use of artificial neural networks in recent years. The proposed methodology aims at overcoming the constraints of traditional analysi...
متن کاملGait Based Vertical Ground Reaction Force Analysis for Parkinson’s Disease Diagnosis Using Self Organizing Map
The aim of this work is to use Self Organizing Map (SOM) for clustering of locomotion kinetic characteristics in normal and Parkinson’s disease. The classification and analysis of the kinematic characteristics of human locomotion has been greatly increased by the use of artificial neural networks in recent years. The proposed methodology aims at overcoming the constraints of traditional analysi...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2013